Add like
Add dislike
Add to saved papers

On the identification of differentially-active transcription factors from ATAC-seq data.

bioRxiv 2024 March 11
UNLABELLED: ATAC-seq has emerged as a rich epigenome profiling technique, and is commonly used to identify Transcription Factors (TFs) underlying given phenomena. A number of methods can be used to identify differentially-active TFs through the accessibility of their DNA-binding motif, however little is known on the best approaches for doing so. Here we benchmark several such methods using a combination of curated datasets with various forms of short-term perturbations on known TFs, as well as semi-simulations. We include both methods specifically designed for this type of data as well as some that can be repurposed for it. We also investigate variations to these methods, and identify three particularly promising approaches (chromVAR-limma with critical adjustments, monaLisa and a combination of GC smooth quantile normalization and multivariate modeling). We further investigate the specific use of nucleosome-free fragments, the combination of top methods, and the impact of technical variation. Finally, we illustrate the use of the top methods on a novel dataset to characterize the impact on DNA accessibility of TRAnscription Factor TArgeting Chimeras (TRAFTAC), which can deplete TFs - in our case NFkB - at the protein level.

AUTHOR SUMMARY: Transcription factors regulate gene expression by binding sites in the genome that often harbor a specific DNA motif. The collective accessibility of these motifs, measured by technologies such as ATAC-seq, can be used to infer the activity of the corresponding transcription factors. Here we use curated datasets of 11 TF-specific perturbations as well as 116 semi-simulated datasets to benchmark various methods for identifying factors that differ in activity between experimental conditions. We investigate important analytic variations and make recommendations pertaining to such analysis. Finally, we illustrate the application of the top methods to characterize the impacts of a novel method for perturbing transcription factors at the protein level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app