Add like
Add dislike
Add to saved papers

Novel Defluorination Pathways of Perfluoroether Compounds (GenX): α-Fe 2 O 3 Nanoparticle Layer Retains Higher Concentrations of Effective Hydrated Electrons.

The development of efficient defluorination technology is an important issue because the kind of emerging pollutant of hexafluoropropylene oxide dimer acid (GenX) as an alternative to perfluorooctanoic acid (PFOA) has the higher environmental risks. In the UV/bisulfite system, we first developed a hydrophobic confined α-Fe2 O3 nanoparticle layer rich in oxygen vacancies, which accelerated the enrichment of HSO3 - and GenX on the surface and pores through electrostatic attraction and hydrophobic interaction, retaining more hydrated electrons (eaq - ) and rapidly destroying GenX under UV excitation. Especially, under anaerobic and aerobic conditions, the degradation percentage of GenX obtain nearly 100%, defluorination of GenX to 88 and 57% respectively. It was amazed to find that the three parallel H/F exchange pathways triggered by the rapid reactions of eaq - and GenX, which were unique to anaerobic conditions, improved the efficiency of fluoride removal and weaken the interference of dissolved oxygen and H+ . Therefore, this study provided an available material and mechanism for sustainable fluoride removal from wastewater in aerobic and anaerobic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app