Add like
Add dislike
Add to saved papers

Ultrafast Computational Screening of Molecules with Inverted Singlet-Triplet Energy Gaps Using the Pariser-Parr-Pople Semiempirical Quantum Chemistry Method.

Molecules with an inverted energy gap between their first singlet and triplet excited states have promising applications in the next generation of organic light-emitting diode (OLED) materials. Unfortunately, such molecules are rare, and only a handful of examples are currently known. High-throughput virtual screening could assist in finding novel classes of these molecules, but current efforts are hampered by the high computational cost of the required quantum chemical methods. We present a method based on the semiempirical Pariser-Parr-Pople theory augmented by perturbation theory and show that it reproduces inverted gaps at a fraction of the cost of currently employed excited-state calculations. Our study paves the way for ultrahigh-throughput virtual screening and inverse design to accelerate the discovery and development of this new generation of OLED materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app