Add like
Add dislike
Add to saved papers

Facile Synthesis of Diazaanthraquinone Dimers as High-Capacity Organic Cathode Materials for Rechargeable Lithium Batteries.

Organic cathode materials (OCMs) have tremendous potential to construct sustainable and highly efficient batteries beyond conventional Li-ion batteries. Thereinto, quinone/pyrazine hybrids show significant advantages in material availability, energy density, and cycling stability. Herein, we propose a facile method to synthesize quinone/pyrazine hybrids, i.e., the condensation reaction between ortho-diamine and bromoacetyl groups. Based on it, we have successfully synthesized three 1,4-diazaanthraquinone (DAAQ) dimers, including 2,2'-bi(1,4-diazaanthraquinone) (BDAAQ) with an exceptional theoretical capacity of 512 mAh g-1 based on the eight-electron reaction. It can be fully utilized in Li batteries in a wide voltage range of 0.8-3.8 V, at the cost of inferior cycling stability. In an optimal voltage range of 1.4-3.8 V, BDAAQ exhibits one of the best comprehensive electrochemical performances for small-molecule OCMs, including a high specific capacity of 366 mAh g-1 , an average discharge voltage of 2.26 V, as well as a respectable capacity retention of 59% after 500 cycles. Moreover, the in-depth investigations reveal the redox reaction mechanisms based on C═O and C═N groups as well as the capacity fading mechanisms based on dissolution-redeposition behaviors. In brief, this work provides an instructive synthesis method and mechanism understanding of high-performance OCMs based on a quinone/pyrazine hybrid structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app