Add like
Add dislike
Add to saved papers

Universal nanocomposite coating with antifouling and redox capabilities for electrochemical affinity biosensing in complex biological fluids.

Electrochemical affinity biosensors have the potential to facilitate the development of multiplexed point-of-care diagnostics in complex biological fluids. However, their commercial viability has been hindered by challenges such as electrode biofouling and the lack of inherent redox properties. To address this unmet need, we have developed a universal nanocomposite coating which is unique in its ability to not only allow oriented conjugation of the biorecognition element but also specific detection directly in complex biological fluids like serum and urine owing to its built-in antifouling and redox capabilities, thus improving suitability for point of care testing. This multifunctional coating comprises a 3D porous crosslinked bovine serum albumin matrix for oriented conjugation and antifouling properties with embedded graphene nanosheets modified with amino-ferrocene for enhanced conductivity and mediator-free biosensing. The coating showed minimal signal degradation despite prolonged exposure to 1% bovine serum albumin, artificial urine and untreated human serum for up to 30 days. To demonstrate its utility, we fabricated and tested proof-of-concept electrochemical immunosensors for bladder cancer protein biomarkers, specifically interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF). The practical feasibility was highlighted by the excellent sensitivity and specificity observed for IL-8 and VEGF with a limit of detection of 41 pg mL-1 and 67 pg mL-1 , respectively. Consequently, this universal nanocomposite-based electrochemical biosensing platform can be extended to the point of care testing of a broad spectrum of biomarkers present in complex biological fluids, thus enabling reliable and early diagnostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app