Add like
Add dislike
Add to saved papers

Hypermethylation in the promoter regions of flavonoid pathway genes is associated with skin color fading during 'Daihong' apple fruit development.

Apple fruit skin color fading is not well understood although the molecular mechanism of skin color formation is well known. The red-fleshed apple cultivar 'Daihong' (DH) exhibited fading skin color during fruit development despite having a heterozygous R6 allele but lacking Red-TE for red fruit skin. In this study, transcriptomic analysis revealed the expression level of MdMYB10 increased with fruit development whereas reduced expression levels of MdMYBPA1 , MdCHS , MdANS , MdUFGT , MdLAR , and MdANR were observed, consistent with decreased levels of chalcone, anthocyanin, catechin, epicatechin, and procyanidin B2. Whole-genome bisulfite sequencing (WGBS) indicated a global gain in cytosine methylation levels and increased methylation in 5' and 3' flanking regions of genes and transposable elements (TEs), and in TE bodies in all CG, CHG and CHH contexts, especially the mCHH context, during fruit development. The increased DNA methylation was attributed to reduced expression levels of DNA demethylase genes, including MdDME1 , MdROS1 , and MdROS2 . Association analysis revealed a significant negative correlation between promoter methylation levels of MdCHS , MdCHI , MdMYBPA1 , and their respective transcript levels, as well as a negative correlation between promoter methylation levels of MdCHS , MdCHI , MdANR , and MdFLS , and the content of chalcones, naringenin-7-glucoside, epicatechin, and quercetin. Treatment with the DNA demethylation agent 5-aza-2'-deoxycytidine verified the negative correlation between DNA methylation and gene expression within the flavonoid pathway. These findings suggest that hypermethylation in promoter regions of genes of the flavonoid biosynthesis pathway is associated with the reduction of gene expression and flavonoid content, and fruit skin color fading during DH apple development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app