Add like
Add dislike
Add to saved papers

Copper single-site engineering in MOF-808 membranes for improved water treatment.

Nanoscale 2024 March 14
MOF-808, a metal-organic framework containing Zr6 O8 clusters, can serve as a secure anchoring point for stabilizing copper single-sites with redox activity, thus making it a promising candidate for catalytic applications. In this study, we target the incorporation of Cu-MOF-808 into a mixed-matrix membrane for the degradation of tyrosol, an emerging endocrine-disrupting compound commonly found in water sources, through Fenton reactions, developing innovative technologies for water treatment. We successfully demonstrate the effectiveness of this approach by preparing catalytic membranes with minimal metal leaching, which is one of the primary challenges in developing copper-based Fenton heterogeneous catalysts. Furthermore, we utilized advanced synchrotron characterization techniques, combining X-ray absorption spectroscopy and pair distribution function analysis of X-ray total scattering, to provide evidence of the atomic structure of the catalytic copper sites within the membranes. Additionally, we observed the presence of weak interactions between the MOF-808 and the organic polymer, potentially explaining their enhanced stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app