Add like
Add dislike
Add to saved papers

The importance of ion kinetic energy for interference removal in ICP-MS/MS.

Talanta 2024 Februrary 21
The effect of ion kinetic energy on gas phase ion reactivity with ICP-MS/MS was investigated in order to explore tuning strategies for interference removal. The collision/reaction gases CO2 , N2 O and O2 were used to observe the ion product distribution for 48 elements using an Agilent tandem ICP-MS (ICP-MS/MS) as a function of reaction gas flow rate (pressure) and ion kinetic energy. The kinetic energy of the incident ion was varied by adjusting the octopole bias (Voct ). The three gases all form oxides (MO+ ) as the primary product with differing reaction enthalpies that result in distinct differences in the ion energies required for reaction with product ion distributions that vary with Voct. Consequently, by varying the ion kinetic energy (i.e., Voct ), differences in interference reactivity can be used to achieve maximum separation. Three practical application examples were reported to demonstrate how the ion kinetic energy can be varied to achieve the ideal ion product distribution for interference resolution: CO2 for the removal of 238 U in Pu analyses, CO2 for the removal of 40 Ar16 O vs. 56 Fe, and O2 for the removal of Sm in Eu analyses, analogous to Pu/Am. The results demonstrate how the starting ion energy defined by Voct is an important factor to fully leverage the utility of any given reaction gas to remove interferences in the mass spectrum using ICP-MS/MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app