Add like
Add dislike
Add to saved papers

Impact of Climate Change on Vegetation Patterns in Altay Prefecture, China.

Altay Prefecture, a typical arid region in northwestern China, has experienced the climate transition from warming-drying to warming-wetting since 1980s and has attracted widespread attention. Nonetheless, it is still unclear how climate change has influenced the distribution of vegetation in this region. In this paper, a reaction-diffusion model of the climate-vegetation system is proposed to study the impact of climate change (precipitation, temperature and carbon dioxide concentration) on vegetation patterns in Altay Prefecture. Our results indicate that the tendency of vegetation growth in Altay Prefecture improved gradually from 1985 to 2010. Under the current climate conditions, the increase of precipitation results in the change of vegetation pattern structures, and eventually vegetation coverage tends to be uniform. Moreover, we found that there exists an optimal temperature where the spot vegetation pattern structure remains stable. Furthermore, the increase in carbon dioxide concentration induces vegetation pattern transition. Based on four climate change scenarios of the Coupled Model Intercomparison Project Phase 6 (CMIP6), we used the power law range (PLR) to predict the optimal scenario for the sustainable development of the vegetation ecosystem in Altay Prefecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app