Add like
Add dislike
Add to saved papers

Using Bayesian hierarchical modeling for performance evaluation of clinical trial accrual for a cancer center.

INTRODUCTION: Slow patient accrual in cancer clinical trials is always a concern. In 2021, the University of Kansas Comprehensive Cancer Center (KUCC), an NCI-designated comprehensive cancer center, implemented the Curated Cancer Clinical Outcomes Database (C3OD) to perform trial feasibility analyses using real-time electronic medical record data. In this study, we proposed a Bayesian hierarchical model to evaluate annual cancer clinical trial accrual performance.

METHODS: The Bayesian hierarchical model uses Poisson models to describe the accrual performance of individual cancer clinical trials and a hierarchical component to describe the variation in performance across studies. Additionally, this model evaluates the impacts of the C3OD and the COVID-19 pandemic using posterior probabilities across evaluation years. The performance metric is the ratio of the observed accrual rate to the target accrual rate.

RESULTS: Posterior medians of the annual accrual performance at the KUCC from 2018 to 2023 are 0.233, 0.246, 0.197, 0.150, 0.254, and 0.340. The COVID-19 pandemic partly explains the drop in performance in 2020 and 2021. The posterior probability that annual accrual performance is better with C3OD in 2023 than pre-pandemic (2019) is 0.935.

CONCLUSIONS: This study comprehensively evaluates the annual performance of clinical trial accrual at the KUCC, revealing a negative impact of COVID-19 and an ongoing positive impact of C3OD implementation. Two sensitivity analyses further validate the robustness of our model. Evaluating annual accrual performance across clinical trials is essential for a cancer center. The performance evaluation tools described in this paper are highly recommended for monitoring clinical trial accrual.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app