Add like
Add dislike
Add to saved papers

UroPredict: Machine learning model on real-world data for prediction of kidney cancer recurrence (UroCCR-120).

NPJ Precision Oncology 2024 Februrary 24
Renal cell carcinoma (RCC) is most often diagnosed at a localized stage, where surgery is the standard of care. Existing prognostic scores provide moderate predictive performance, leading to challenges in establishing follow-up recommendations after surgery and in selecting patients who could benefit from adjuvant therapy. In this study, we developed a model for individual postoperative disease-free survival (DFS) prediction using machine learning (ML) on real-world prospective data. Using the French kidney cancer research network database, UroCCR, we analyzed a cohort of surgically treated RCC patients. Participating sites were randomly assigned to either the training or testing cohort, and several ML models were trained on the training dataset. The predictive performance of the best ML model was then evaluated on the test dataset and compared with the usual risk scores. In total, 3372 patients were included, with a median follow-up of 30 months. The best results in predicting DFS were achieved using Cox PH models that included 24 variables, resulting in an iAUC of 0.81 [IC95% 0.77-0.85]. The ML model surpassed the predictive performance of the most commonly used risk scores while handling incomplete data in predictors. Lastly, patients were stratified into four prognostic groups with good discrimination (iAUC = 0.79 [IC95% 0.74-0.83]). Our study suggests that applying ML to real-world prospective data from patients undergoing surgery for localized or locally advanced RCC can provide accurate individual DFS prediction, outperforming traditional prognostic scores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app