Add like
Add dislike
Add to saved papers

In a century from agitated cells to human organoids.

Reaching back more than a century, suspension cultures have provided major insights into processes of histogenesis; e.g., cell communication, distinction of self/nonself, cell sorting and cell adhesion. Besides studies on lower animals, the vertebrate retina served as excellent reaggregate model to analyze 3D reconstruction of a complex neural laminar tissue. Methodologically, keeping cells under suspension is essential to achieve tissue organisation in vitro; thereby, the environmental conditions direct the emergent histotypic particulars. Recent progress in regenerative medicine is based to a large extent on human induced pluripotent stem cells (hiPSCs), which are cultured under suspension. Following their genetically directed differentiation into various histologic 3D structures, organoids provide excellent multipurpose in vitro assay models, as well as tissues for repair transplantations. Historically, a nearly fully laminated retinal spheroid from avian embryos was achieved already in 1984, foreshadowing the potential of culturing stem cells under suspension for tissue reconstruction purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app