Add like
Add dislike
Add to saved papers

Hyaluronan-decorated copper-doxorubicin-anlotinib nanoconjugate for targeted synergistic chemo/chemodynamic/antiangiogenic tritherapy against hepatocellular carcinoma.

Copper-based nanomaterials show considerable potential in the chemodynamic therapy of cancers. However, their clinical application is restricted by low catalytic activity in tumor microenvironment and copper-induced tumor angiogenesis. Herein, a novel copper-doxorubicin-anlotinib (CDA) nanoconjugate was constructed by the combination of copper-hydrazide coordination, hydrazone linkage and Schiff base bond. The CDA nanoconjugate consists of a copper-3,3'-dithiobis(propionohydrazide)-doxorubicin core and an anlotinib-hyaluronan shell. Benefiting from hyaluronan camouflage and abundant disulfide bonds and Cu2+ , the CDA nanoconjugate possessed excellent tumor-targeting and glutathione-depleting abilities and enhanced chemodynamic efficacy. Released doxorubicin significantly improved copper-mediated chemodynamic therapy by upregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression to increase intracellular H2 O2 level. Furthermore, the nanoconjugate produced excessive •OH to induce lipid peroxidation and mitochondrial dysfunction, thus greatly elevating doxorubicin-mediated chemotherapy. Importantly, anlotinib effectively inhibited the angiogenic potential of copper ions. In a word, the CDA nanoconjugate is successfully constructed by combined coordination and pH-responsive linkages, and displays the great potential of copper-drug conjugate for targeted synergistic chemo/chemodynamic/antiangiogenic triple therapy against cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app