Add like
Add dislike
Add to saved papers

Functional and Degradable Polyester- co -polyethers from CO 2 , Butadiene, and Epoxides.

ACS Macro Letters 2024 Februrary 22
Carbon dioxide (CO2 ), as a renewable and nontoxic C1 feedstock, has been recognized as an ideal comonomer to prepare sustainable materials. In this regard, substantial focus has been dedicated to the ring-opening copolymerization of CO2 and epoxides, which results in the creation of aliphatic polycarbonates in most cases. Here, we report an unprecedented strategy to synthesize functional and degradable polyester- co -polyethers from CO2 , butadiene, and epoxides via a CO2 /butadiene-derived δ-valerolactone intermediate (EVP). Utilizing a chromium salen complex as the catalyst, the copolymerization of EVP and epoxides was successfully achieved to produce CO2 /butadiene/epoxide terpolymers. The obtained polyester- co -polyethers with varied 39-93 mol % EVP content (equal to 18-28 wt % CO2 incorporation) show high thermal stability, tunable glass-transition temperatures, on-demand functionality, and good chemical degradability. This method extends the potential to access functional CO2 -based polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app