Add like
Add dislike
Add to saved papers

Exploring disorder correlations in superconducting systems: spectroscopic insights and matrix element effects.

Understanding the intricate interplay between disorder and superconductivity has become a key area of research in condensed matter physics, with profound implications for materials science. Recent studies have shown that spatial correlations of disorder potential can improve superconductivity, prompting a re-evaluation of some theoretical models. This paper explores the influence of disorder correlations on the fundamental properties of superconducting systems, going beyond the traditional assumption of spatially uncorrelated disorder. In particular, we investigate the influence of disorder correlations on key spectroscopic superconductor properties, including the density of states, as well as on the matrix elements of the superconducting coupling constant and their impact on the localization length. Our findings offer valuable insights into the role of disorder correlations in shaping the behavior of superconducting materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app