Add like
Add dislike
Add to saved papers

EAGS: efficient and adaptive Gaussian smoothing applied to high-resolved spatial transcriptomics.

GigaScience 2024 January 3
BACKGROUND: The emergence of high-resolved spatial transcriptomics (ST) has facilitated the research of novel methods to investigate biological development, organism growth, and other complex biological processes. However, high-resolved and whole transcriptomics ST datasets require customized imputation methods to improve the signal-to-noise ratio and the data quality.

FINDINGS: We propose an efficient and adaptive Gaussian smoothing (EAGS) imputation method for high-resolved ST. The adaptive 2-factor smoothing of EAGS creates patterns based on the spatial and expression information of the cells, creates adaptive weights for the smoothing of cells in the same pattern, and then utilizes the weights to restore the gene expression profiles. We assessed the performance and efficiency of EAGS using simulated and high-resolved ST datasets of mouse brain and olfactory bulb.

CONCLUSIONS: Compared with other competitive methods, EAGS shows higher clustering accuracy, better biological interpretations, and significantly reduced computational consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app