Add like
Add dislike
Add to saved papers

Molecular magnetic resonance imaging of myeloperoxidase activity identifies culprit lesions and predicts future atherothrombosis.

AIMS: Unstable atherosclerotic plaques have increased activity of myeloperoxidase (MPO). We examined whether molecular magnetic resonance imaging (MRI) of intraplaque MPO activity predicts future atherothrombosis in rabbits and correlates with ruptured human atheroma.

METHODS AND RESULTS: Plaque MPO activity was assessed in vivo in rabbits ( n = 12) using the MPO-gadolinium (Gd) probe at 8 and 12 weeks after induction of atherosclerosis and before pharmacological triggering of atherothrombosis. Excised plaques were used to confirm MPO activity by liquid chromatography-tandem mass spectrometry (LC-MSMS) and to determine MPO distribution by histology. MPO activity was higher in plaques that caused post-trigger atherothrombosis than plaques that did not. Among the in vivo MRI metrics, the plaques' R1 relaxation rate after administration of MPO-Gd was the best predictor of atherothrombosis. MPO activity measured in human carotid endarterectomy specimens ( n = 30) by MPO-Gd-enhanced MRI was correlated with in vivo patient MRI and histological plaque phenotyping, as well as LC-MSMS. MPO-Gd retention measured as the change in R1 relaxation from baseline was significantly greater in histologic and MRI-graded American Heart Association (AHA) type VI than type III-V plaques. This association was confirmed by comparing AHA grade to MPO activity determined by LC-MSMS.

CONCLUSION: We show that elevated intraplaque MPO activity detected by molecular MRI employing MPO-Gd predicts future atherothrombosis in a rabbit model and detects ruptured human atheroma, strengthening the translational potential of this approach to prospectively detect high-risk atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app