Add like
Add dislike
Add to saved papers

Prediction simulation of atmospheric precipitation chemistry-enhanced cell proliferation in reservoir Scenedesmus quadricauda, Chlorella vulgaris, and Scenedesmus obliquus.

Bioresource Technology 2024 Februrary 17
Atmospheric precipitation deposits acid-forming substances into surface water. However, the effects of water-soluble components on microalgae proliferation are poorly understood. This study analysed the growth characteristics of three microalgae bioindicators of water quality: Scenedesmus quadricauda, Chlorella vulgaris, and Scenedesmus obliquus, adopting on-site monitoring, culture experiments simulating 96 types of water by supplementing anions and cations, and predictive modelling. The result quantified pH > 3.0 rain with dominant Ca2+ , Mg2+ , and K+ cations, together with anions of NO3 - and SO4 2- . The presence of Ca2+ of up to 0.1 mM and Mg2+ concentrations (>0.5 mM) suppressed Scenedesmus quadricauda growth. Soluble ions, luminosity, and pH had significant impacts (p ≤ 0.01) on increased microalgae proliferation. A newly proposed microalgae growth model predicted a 10.7-fold increase in cell density six days post-incubation in the case of rainfall. The modelling supports algal outbreaks and delays prediction during regional water cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app