Add like
Add dislike
Add to saved papers

MAHyNet: Parallel Hybrid Network for RNA-Protein Binding Sites Prediction Based on Multi-Head Attention and Expectation Pooling.

RNA-binding proteins (RBPs) can regulate biological functions by interacting with specific RNAs, and play an important role in many life activities. Therefore, the rapid identification of RNA-protein binding sites is crucial for functional annotation and site-directed mutagenesis. In this work, a new parallel network that integrates the multi-head attention mechanism and the expectation pooling is proposed, named MAHyNet. The left-branch network of MAHyNet hybrids convolutional neural networks (CNNs) and gated recurrent neural network (GRU) to extract the features of one-hot. The right-branch network is a two-layer CNN network to analyze physicochemical properties of RNA base. Specifically, the multi-head attention mechanism is a computational collection of multiple independent layers of attention, which can extract feature information from multiple dimensions. The expectation pooling combines probabilistic thinking with global pooling. This approach helps to reduce model parameters and enhance the model performance. The combination of CNN and GRU enables further extraction of high-level features in sequences. In addition, the study shows that appropriate hyperparameters have a positive impact on the model performance. Physicochemical properties can be used to supplement characterization information to improving model performance. The experimental results show that MAHyNet has better performance than other models. The source code and data are available at https://github.com/HNUBioinformatics/MAHyNet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app