Add like
Add dislike
Add to saved papers

Ion-concentration gradients induced by synaptic input increase the voltage depolarization in dendritic spines.

The vast majority of excitatory synaptic connections occur on dendritic spines. Due to their extremely small volume and spatial segregation from the dendrite, even moderate synaptic currents can significantly alter ionic concentrations. This results in chemical potential gradients between the dendrite and the spine head, leading to measurable electrical currents. In modeling electric signals in spines, different formalisms were previously used. While the cable equation is fundamental for understanding the electrical potential along dendrites, it only considers electrical currents as a result of gradients in electrical potential. The Poisson-Nernst-Planck (PNP) equations offer a more accurate description for spines by incorporating both electrical and chemical potential. However, solving PNP equations is computationally complex. In this work, diffusion currents are incorporated into the cable equation, leveraging an analogy between chemical and electrical potential. For simulating electric signals based on this extension of the cable equation, a straightforward numerical solver is introduced. The study demonstrates that this set of equations can be accurately solved using an explicit finite difference scheme. Through numerical simulations, this study unveils a previously unrecognized mechanism involving diffusion currents that amplify electric signals in spines. This discovery holds crucial implications for both numerical simulations and experimental studies focused on spine neck resistance and calcium signaling in dendritic spines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app