Add like
Add dislike
Add to saved papers

Machine learning-based prediction of heavy metal immobilization rate in the solidification/stabilization of municipal solid waste incineration fly ash (MSWIFA) by geopolymers.

Geopolymer is an environmentally friendly solidification/stabilization (S/S) binder, exhibiting significant potential for immobilizing heavy metals in municipal solid waste incineration fly ash (MSWIFA). However, due to the diversity in geopolymer raw materials and heavy metal properties, predicting the heavy metal immobilization rate proves to be challenging. In order to enhance the application of geopolymers in immobilizing heavy metals in MSWIFA, a universal method is required to predict the heavy metal immobilization rate. Therefore, this study employs machine learning to predict the heavy metal immobilization rate in S/S of MSWIFA by geopolymers. A gradient boosting regression (GB) model with superior performance (R2 = 0.9214) was obtained, and a graphical user interface (GUI) software was developed to facilitate the convenient accessibility of researchers. The feature categories influencing heavy metal immobilization rate are ranked in order of importance as heavy metal properties > geopolymer raw material properties > curing conditions > alkali activator properties. This study facilitates the rapid prediction, improvement, and optimization of heavy metal immobilization in S/S of MSWIFA by geopolymers, and also provides a theoretical basis for the resource utilization of industrial solid waste, contributing to the environmental protection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app