Add like
Add dislike
Add to saved papers

Physiologically Based Pharmacokinetic (PBPK) Modeling of small molecules: How Much Progress Have We Made?

Physiologically based pharmacokinetic (PBPK) models of small molecules have become mainstream in drug development and academic research. The use of PBPK models is continuously expanding with the majority of work now focusing on predictions of drug-drug interactions, drug-disease interactions, and changes in drug disposition across lifespan. Recently, publications that use PBPK modeling to predict drug disposition during pregnancy and in organ impairment have increased reflecting the advances in incorporating diverse physiological changes into the models. Due to the expanding computational power and diversity of modeling platforms available, the complexity of PBPK models has also increased. Academic efforts have provided clear advances in better capturing human physiology in PBPK models and incorporating more complex mathematical concepts into PBPK models. Examples of such advances include the segregated gut model with a series gut compartments allowing modeling of physiological blood flow distribution within an organ and zonation of metabolic enzymes, and series compartment liver models allowing simulations of hepatic clearance for high extraction drugs. Despite these advances in academic research, the progress in assessing model quality and defining model acceptance criteria based on the intended use of the models has not kept pace. This review suggests that awareness of the need for predefined criteria for model acceptance has increased but many manuscripts still lack description of scientific justification and/or rationale for chosen acceptance criteria. As artificial intelligence and machine learning approaches become more broadly accepted, these tools offer promise for development of comprehensive assessment for existing observed data and analysis of model performance. Significance Statement PBPK modeling has become a mainstream application in academic literature and is broadly used for predictions, analysis and evaluation of pharmacokinetic data. Many significant advances have been made in developing advanced PBPK models that better capture human physiology but oftentimes sufficient justification for the chosen model acceptance criterion and model structure is still missing. This review provides a summary of the current landscape of PBPK applications used and highlights the needs for advancing PBPK modeling science and training in academia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app