Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

A Thermoplasmonic Approach for Investigating Plasma Membrane Repair in Living Cells and Model Membranes.

The cell membrane is crucial for cell survival, and ensuring its integrity is essential as the cell experiences injuries throughout its entire life cycle. To prevent damage to the membrane, cells have developed efficient plasma membrane repair mechanisms. These repair mechanisms can be studied by combining confocal microscopy and nanoscale thermoplasmonics to identify and investigate the role of key proteins, such as annexins, involved in surface repair in living cells and membrane model systems. The puncturing method employs a laser to induce highly localized heating upon nanoparticle irradiation. The use of near-infrared light minimizes phototoxicity in the biological sample, while the majority of the absorption takes place in the near-infrared resonant plasmonic nanoparticle. This thermoplasmonic method has been exploited for potential photothermal and biophysical research to enhance the understanding of intracellular mechanisms and cellular responses through vesicle and cell fusion studies. The approach has shown to be complementary to existing methods for membrane disruption, such as mechanically, chemically, or optically induced injuries, and provides a high level of control by inflicting extremely localized injuries. The extent of the injury is limited to the vicinity of the spherical nanoparticle, and no detrimental damage occurs along the beam path as opposed to pulsed lasers using different wavelengths. Despite certain limitations, such as the formation of nanobubbles, the thermoplasmonic method offers a unique tool for investigating cellular responses in plasma membrane repair in an almost native environment without compromising cell viability. When integrated with confocal microscopy, the puncturing method can provide a mechanistic understanding of membrane dynamics in model membrane systems as well as quantitative information on protein responses to membrane damage, including protein recruitment and their biophysical function. Overall, the application of this method to reduced model systems can enhance our understanding of the intricate plasma membrane repair machinery in living cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app