Add like
Add dislike
Add to saved papers

Postmortem MRI of Tissue Frozen at Autopsy.

bioRxiv 2024 January 24
INTRODUCTION: Postmortem MRI provides insight into location of pathology within tissue blocks, enabling efficient targeting of histopathological studies. While postmortem imaging of fixed tissue is gaining popularity, imaging tissue frozen at the time of extraction is significantly more challenging.

METHODS: Tissue integrity was examined using RNA integrity number (RIN), in mouse brains placed between -20 °C and 20 °C for up to 24 hours, to determine the highest temperature that could potentially be used for imaging without tissue degeneration. Human tissue frozen at the time of autopsy was sealed in a tissue chamber filled with 2-methylbutane to prevent contamination of the MRI components. The tissue was cooled to a range of temperatures in a 9.4T MRI using a recirculating aqueous ethylene glycol solution. MRI was performed using a magnetization-prepared rapid gradient echo (MPRAGE) sequence with inversion time of 1400 ms to null the signal from 2-methylbutane bath, isotropic resolution between 0.3-0.4 mm, and scan time of about 4 hours was used to study the anatomical details of the tissue block.

RESULTS AND DISCUSSION: A temperature of -7 °C was chosen for imaging as it was below the highest temperature that did not show significant RIN deterioration for over 12 hours, at the same time gave robust imaging signal and contrast between brain tissue types. Imaging performed on various human tissue blocks revealed good gray-white matter contrast and revealing subpial, subcortical, and deep white matter lesions typical of multiple sclerosis enabling further spatially targeted studies.

CONCLUSION: Here, we describe a new method to image cold tissue, while maintaining tissue integrity and biosafety during scanning. In addition to improving efficiency of downstream processes, imaging tissue at sub-zero temperatures may also improve our understanding of compartment specificity of MRI signal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app