Add like
Add dislike
Add to saved papers

Low-Temperature controlled synthesis of nanocast mixed metal oxide spinels for enhanced OER activity.

The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1 Fe0.1 Ni0.3 Co2.5 O4 , MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150-200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm-2 ), highest current density (433 mA cm-2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm-2 ). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app