Add like
Add dislike
Add to saved papers

Injectable Extracellular Matrix-Inspired Hemostatic Hydrogel Composed of Hyaluronan and Gelatin with Shear-Thinning and Self-Healing.

Biomacromolecules 2024 Februrary 3
Injectable ECM-inspired hydrogels composed of hyaluronic acid and gelatin are biocompatible and potentially useful for various medical applications. We developed injectable hydrogels composed of monoaldehyde-modified hyaluronic acid (HA-mCHO) and carbohydrazide-modified gelatin (GL-CDH), "HA/GL gel", whose ratios of HA-mCHO to GL-CDH were different. The hydrogels exhibited gelation times shorter than 3 s. In addition, the hydrogels showed strong shear-thinning and self-healing properties, mainly because of the dynamic covalent bonding of Schiff bases between HA-mCHO and GL-CDH. This hydrogel degraded in the mice's peritoneum for a week and showed excellent biocompatibility. Moreover, the hydrogel showed a higher breaking strength than fibrin glue in the lap shear test of porcine skin. Finally, the hydrogels decreased bleeding to as low as fibrin glue without using thrombin and fibrinogen in a mouse liver bleeding model in both single- and double-barreled syringe administrations. HA/GL gels have the potential for excellent biocompatibility and hemostasis in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app