Add like
Add dislike
Add to saved papers

A prognostic prediction model for ovarian cancer using a cross-modal view correlation discovery network.

Ovarian cancer is a tumor with different clinicopathological and molecular features, and the vast majority of patients have local or extensive spread at the time of diagnosis. Early diagnosis and prognostic prediction of patients can contribute to the understanding of the underlying pathogenesis of ovarian cancer and the improvement of therapeutic outcomes. The occurrence of ovarian cancer is influenced by multiple complex mechanisms, including the genome, transcriptome and proteome. Different types of omics analysis help predict the survival rate of ovarian cancer patients. Multi-omics data of ovarian cancer exhibit high-dimensional heterogeneity, and existing methods for integrating multi-omics data have not taken into account the variability and inter-correlation between different omics data. In this paper, we propose a deep learning model, MDCADON, which utilizes multi-omics data and cross-modal view correlation discovery network. We introduce random forest into LASSO regression for feature selection on mRNA expression, DNA methylation, miRNA expression and copy number variation (CNV), aiming to select important features highly correlated with ovarian cancer prognosis. A multi-modal deep neural network is used to comprehensively learn feature representations of each omics data and clinical data, and cross-modal view correlation discovery network is employed to construct the multi-omics discovery tensor, exploring the inter-relationships between different omics data. The experimental results demonstrate that MDCADON is superior to the existing methods in predicting ovarian cancer prognosis, which enables survival analysis for patients and facilitates the determination of follow-up treatment plans. Finally, we perform Gene Ontology (GO) term analysis and biological pathway analysis on the genes identified by MDCADON, revealing the underlying mechanisms of ovarian cancer and providing certain support for guiding ovarian cancer treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app