Add like
Add dislike
Add to saved papers

CLARUS: An interactive explainable AI platform for manual counterfactuals in graph neural networks.

BACKGROUND: Lack of trust in artificial intelligence (AI) models in medicine is still the key blockage for the use of AI in clinical decision support systems (CDSS). Although AI models are already performing excellently in systems medicine, their black-box nature entails that patient-specific decisions are incomprehensible for the physician. Explainable AI (XAI) algorithms aim to "explain" to a human domain expert, which input features influenced a specific recommendation. However, in the clinical domain, these explanations must lead to some degree of causal understanding by a clinician.

RESULTS: We developed the CLARUS platform, aiming to promote human understanding of graph neural network (GNN) predictions. CLARUS enables the visualisation of patient-specific networks, as well as, relevance values for genes and interactions, computed by XAI methods, such as GNNExplainer. This enables domain experts to gain deeper insights into the network and more importantly, the expert can interactively alter the patient-specific network based on the acquired understanding and initiate re-prediction or retraining. This interactivity allows us to ask manual counterfactual questions and analyse the effects on the GNN prediction.

CONCLUSION: We present the first interactive XAI platform prototype, CLARUS, that allows not only the evaluation of specific human counterfactual questions based on user-defined alterations of patient networks and a re-prediction of the clinical outcome but also a retraining of the entire GNN after changing the underlying graph structures. The platform is currently hosted by the GWDG on https://rshiny.gwdg.de/apps/clarus/.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app