Add like
Add dislike
Add to saved papers

(Micro)saccade-related potentials during face recognition: A study combining EEG, eye-tracking, and deconvolution modeling.

Under natural viewing conditions, complex stimuli such as human faces are typically looked at several times in succession, implying that their recognition may unfold across multiple eye fixations. Although electrophysiological (EEG) experiments on face recognition typically prohibit eye movements, participants still execute frequent (micro)saccades on the face, each of which generates its own visuocortical response. This finding raises the question of whether the fixation-related potentials (FRPs) evoked by these tiny gaze shifts also contain psychologically valuable information about face processing. Here, we investigated this question by corecording EEG and eye movements in an experiment with emotional faces (happy, angry, neutral). Deconvolution modeling was used to separate the stimulus ERPs to face onset from the FRPs generated by subsequent microsaccades-induced refixations on the face. As expected, stimulus ERPs exhibited typical emotion effects, with a larger early posterior negativity (EPN) for happy/angry compared with neutral faces. Eye tracking confirmed that participants made small saccades in 98% of the trials, which were often aimed at the left eye of the stimulus face. However, while each saccade produced a strong response over visual areas, this response was unaffected by the face's emotional expression, both for the first and for subsequent (micro)saccades. This finding suggests that the face's affective content is rapidly evaluated after stimulus onset, leading to only a short-lived sensory enhancement by arousing stimuli that does not repeat itself during immediate refixations. Methodologically, our work demonstrates how eye tracking and deconvolution modeling can be used to extract several brain responses from each EEG trial, providing insights into neural processing at different latencies after stimulus onset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app