Add like
Add dislike
Add to saved papers

Coupled thermo-mechanical interaction on a multi-layered skin tissue with temperature-dependent physical properties irradiated by a pulse laser.

A detailed understanding of the coupled thermo-mechanical interaction on the biological tissue irradiated by a pulse laser is essential for the existed therapeutic methods constructed on the photo-thermal effect, which will contribute to the design, characterization and optimization of strategies for delivering better treatment. The aim of present work is to explore the coupled thermo-mechanical behavior of a multi-layered skin tissue with temperature-dependent physical properties under the pulsed laser irradiation. A layered theoretical model involved variable physical parameters with temperature has been proposed firstly according to the generalized theory of thermo-elasticity with dual-phase lag mechanism. The numerical method based on an explicit finite difference scheme is then employed to predict the temporal and spatial distributions of the temperature, thermal deformation and stresses experienced to a short-pulse laser irradiation. On this basis, the effect of variable thermal and mechanical physical parameters of skin tissue on the coupled thermo-mechanical behavior and relative thermal damage has been evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app