Add like
Add dislike
Add to saved papers

NIR-Mediated Cu2O/ Au Nanomotors for Synergistically Treating Hepatoma Carcinoma Cells.

We presented a NIR- driven Janus Cu2O/ Au nanomotor. The nanomotor has a truncated octahedral structure. By asymmetric Au evaporation, the light response range of Cu2O nanomotor is extended to near-infrared range, and the speed of Cu2O/ Au nanomotors under NIR is significantly increased. In promoting apoptosis of hepatocellular carcinoma, except the nanotoxicity of Cu2O itself, the Au layer enhances the photothermal properties, allowing Cu2O/ Au nanomotors to induce apoptosis in hepatocellular carcinoma cells by heating them. On the other hand, a Schottky barrier formed at the interface of Cu2O and Au, preventing the recombination of electrons, which makes more electrons react with biomolecules to produce toxic ROS to hepatocellular cells. The killing rate of hepatocellular carcinoma cells reached 87% by the combined effect of nanotoxicity inhibition of proliferation and photothermal & photodynamic therapy (PTT & PDT). Nanomotors in combination with multiple approaches to tumor are explored a new treatment in this article.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app