We have located links that may give you full text access.
An amphiphilic dansyl based multianalyte sensor for the detection of Hg 2+ , PPi, and TNP: A three-in-one chemical sensor.
Methods : a Companion to Methods in Enzymology 2024 January 23
A fluorescent dansyl-based amphiphilic probe, 5-(dimethylamino)-N-hexadecylnaphthalene-1-sulfonamide (DLC), was synthesized and characterized to detect multiple analytes at different sensing environments. In acetonitrile, DLC detects nitro explosives such as trinitrophenol (TNP) and 2,4-dinitrophenol (2,4-DNP) by an emission "on-off" response method, and the detection limits (LOD) were estimated to be as low as 4.3 µM and 17.4 µM, respectively. Amphiphilic long chains of the probe were embedded into lipid bilayers to form nanoscale vesicles DLC.Ves. Nanovesicular probe DLC.Ves was found to be highly selective for Hg2+ among other metal ions and for pyrophosphate (PPi) ions among various anions. DLC.Ves could detect Hg2+ with a turn "on-off" emission and PPi with ratiometric change in emission at 525 nm. It is proposed that DLC.Ves could detect Hg2+ via the Hg2+ -induced aggregation quenching mechanism and PPi through the Hydrogen bonding. The LODs are estimated as 6.41 µM and 70.9 µM for Hg2+ and PPi, respectively. 1 H NMR, SEM, and fluorescence lifetime measurements confirmed the binding mechanism. Thus, it is believed that the simple fluorescent probe DLC could be a prominent sensor to detect multiple analytes depending on the sensing medium.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app