Add like
Add dislike
Add to saved papers

Cordyceps cicadae ameliorates inflammatory responses, oxidative stress, and fibrosis by targeting the PI3K/mTOR-mediated autophagy pathway in the renal of MRL/lpr mice.

BACKGROUND: The vast majority of systemic lupus erythematosus patients develop lupus nephritis (LN) with severe renal manifestations, such as inflammatory responses, oxidative stress, and fibrosis. The purpose of this research was to investigate Cordyceps cicadae as a potential therapeutic target for treating inflammatory responses, oxidative stress, and fibrosis in LN.

METHODS: The effects of C. cicadae on lupus symptoms in mice with LN were determined. MRL/lpr mice were treated with C. cicadae (4 g/kg/day, i.e., CC group, n = 8) or an equal volume of saline (model group, n = 8), and MRL/MP mice were treated with an equal volume of saline (control group, n = 8). Renal function indices, renal pathology, inflammatory markers, oxidative stress markers, and renal interstitial fibrosis levels were evaluated after C. cicadae treatment. Western blot analysis was performed to investigate the effect of C. cicadae on the expression of fibrosis biomarkers and the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)-mediated autophagy pathway in the renal tissues of mice.

RESULTS: C. cicadae ameliorated renal lesions, the inflammatory response, and oxidative stress damage in MRL/lpr mice. C. cicadae treatment inhibited renal fibrosis (16.31 ± 4.16 vs. 31.25 ± 5.61) and downregulated the expression of the fibrosis biomarkers alpha-smooth muscle actin, fibronectin, and collagen I (COL I) in the kidneys of MRL/lpr mice. In addition, further research showed that the PI3K/mTOR-mediated autophagy pathway was involved in C. cicadae-mediated effects on renal fibrosis in MRL/lpr mice. Furthermore, the therapeutic effect of C. cicadae on repairing renal fibrosis and damage in MRL/lpr mice was abolished by the PI3K agonist 740 Y-P.

CONCLUSIONS: The findings of the present research showed that C. cicadae could alleviate inflammatory responses, oxidative stress, and fibrosis in the renal tissues of mice with LN by targeting the PI3K/mTOR-mediated autophagy pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app