Add like
Add dislike
Add to saved papers

Silica nanoparticles inhibit cadmium uptake by the protozoan Tetrahymena thermophila without the need for adsorption.

The simultaneous presence of nanoparticles (NPs) and heavy metals in the environment may affect their mutual biological uptake. Although previous studies showed that NPs could alter the cellular uptake of heavy metals by their adsorption of heavy metals, whether they could affect metal uptake without the need for adsorption is unknown. This study examined the effects of silica (SiO2 ) NPs on the uptake of Cd ion by the protozoan Tetrahymena thermophila. We found that, even with negligible levels of adsorption, SiO2 NPs at concentrations of 3 to 100 mg/L inhibited Cd uptake. This inhibitory effect decreased as the ambient Cd concentration increased from 1 to 100 μg/L, suggesting the involvement of at least two transporters with different affinities for Cd. The transporters were subsequently identified by the specific protein inhibitors amiloride and tariquidar as NCX and ABCB1, which are responsible for the uptake of Cd at low and high Cd levels, respectively. RT-qPCR and molecular dynamics simulation further showed that the inhibitory effects of SiO2 NPs were attributable to the down-regulated expression of the genes Ncx and Abcb1, steric hindrance of Cd uptake by NCX and ABCB1, and the shrinkage of the central channel pore of the transporters in the presence of SiO2 NPs. SiO2 NPs more strongly inhibited Cd transport by NCX than by ABCB1, due to the higher binding affinity of SiO2 NPs with NCX. Overall, our study sheds new light on a previously overlooked influence of NPs on metal uptake and the responsible mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app