Add like
Add dislike
Add to saved papers

Histone FRET reports the spatial heterogeneity in nanoscale chromatin architecture that is imparted by the epigenetic landscape at the level of single foci in an intact cell nucleus.

Chromosoma 2024 January 25
Genome sequencing has identified hundreds of histone post-translational modifications (PTMs) that define an open or compact chromatin nanostructure at the level of nucleosome proximity, and therefore serve as activators or repressors of gene expression. Direct observation of this epigenetic mode of transcriptional regulation in an intact single nucleus, is however, a complex task. This is because despite the development of fluorescent probes that enable observation of specific histone PTMs and chromatin density, the changes in nucleosome proximity regulating gene expression occur on a spatial scale well below the diffraction limit of optical microscopy. In recent work, to address this research gap, we demonstrated that the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between fluorescently labelled histones core to the nucleosome, is a readout of chromatin nanostructure that can be multiplexed with immunofluorescence (IF) against specific histone PTMs. Here from application of this methodology to gold standard gene activators (H3K4Me3 and H3K9Ac) versus repressors (e.g., H3K9Me3 and H3K27Me), we find that while on average these histone marks do impart an open versus compact chromatin nanostructure, at the level of single chromatin foci, there is significant spatial heterogeneity. Collectively this study illustrates the importance of studying the epigenetic landscape as a function of space within intact nuclear architecture and opens the door for the study of chromatin foci sub-populations defined by combinations of histone marks, as is seen in the context of bivalent chromatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app