Add like
Add dislike
Add to saved papers

Evaluation of the effects of latanoprost and benzalkonium chloride on the cell viability and nonpolar lipid profile produced by human meibomian gland epithelial cells in culture.

PURPOSE: The purpose of this study was to explore the effects of a PGF2α analog, latanoprost, and its preservative, benzalkonium chloride (BAK), on the cell viability and lipidomic expression of immortalized human meibomian gland epithelial cells (HMGECs).

METHODS: Differentiated HMGECs were exposed to latanoprost (0.05 to 50 µg/ml), BAK (0.2 to 200 µg/ml), or combined latanoprost-BAK (0.05-0.2 to 50-200 µg/ml). EP- and FP-type receptors, the cognate receptors of PGE2 and PGF2α , were inhibited, thereby sparing and isolating the function of each receptor to one condition. Cell viability was assessed by ATP quantitation, and lipid extracts were analyzed by ESI-MSMSALL with a Triple TOF 5600 Mass Spectrometer (SCIEX, Framingham, MA) using SCIEX LipidView 1.3.

RESULTS: Latanoprost and BAK were found to be lethal to HMGECs at the highest concentrations (p < 0.001 for both). The cytotoxicity of latanoprost was mediated through FP- and EP-independent mechanisms. Both latanoprost and BAK significantly modulated the lipidomic expression of several cholesteryl esters (8% and 30%, respectively) and triacylglycerols (10% and 12%, respectively). The combined latanoprost-BAK agent appeared to be no more toxic and to only negligibly alter the lipid profile relative to its individual components.

CONCLUSIONS: The use of latanoprost and BAK in glaucoma may alter the viability of the meibomian glands and their lipid expression in vivo. Sublethal concentrations of BAK appear to modulate meibum lipid expression, particularly in relation to sterol biosynthesis. Non-preserved latanoprost had less cytotoxicity at lower doses and fewer lipidomic effects compared to BAK, further strengthening the argument in favor of BAK-free pharmaceutical preparations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app