Add like
Add dislike
Add to saved papers

Transmembrane pH gradient imaging in rodent glioma models.

NMR in Biomedicine 2024 January 24
A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi ) and extracellular pH (pHe ), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app