Add like
Add dislike
Add to saved papers

Recrystallized resistant starch by encapsulation with konjac glucomannan: Structural changes, digestibility, and its effect on glucose response and short-term satiety in mice.

Food Chemistry 2024 January 11
The effects of the structure and digestibility of konjac glucomannan (KGM)-recrystallized resistant starch complex (KRS3) on the glycemic response and short-term satiety in mice were investigated. KRS3 samples were prepared by recrystallized debranched starch (RS3) at 50 °C, and then combined with KGM. The RS3 and KRS3 samples displayed an A-type pattern and maintained peak temperature values above 110 °C. With an increase in KGM, the swelling power and apparent viscosity of KRS3 increased. The results of in vitro and in vivo digestion revealed that KRS3 with a resistant starch content ranging from 69.4 % to 78.8 % could effectively maintain postprandial blood glucose levels. KRS3, particularly with 0.5 % KGM, slowed gastric emptying of mice from 82.7 % to 36.6 % and intestinal propulsion rate from 60.9 % to 35.3 %, resulting in strong satiety. RS3 combined with KGM could serve as a new approach to develop RS3 based foods with low glycemic responses and high-satiety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app