Journal Article
Review
Add like
Add dislike
Add to saved papers

Branched-Chain Amino Acids Supplementation and Post-Exercise Recovery: An Overview of Systematic Reviews.

J Am Nutr Assoc 2024 January 20
Objective: This overview of systematic reviews (OoSRs) aimed, firstly, to systematically review, summarize, and appraise the findings of published systematic reviews with or without meta-analyses that investigate the effects of branched-chain amino acids (BCAA) on post-exercise recovery of muscle damage biomarkers, muscle soreness, and muscle performance. The secondary objective was to re-analyze and standardize the results of meta-analyses using the random-effects Hartung-Knapp-Sidik-Jonkman (HKSJ) method. Methods: The methodological quality of the reviews was assessed using A Measurement Tool to Assess Systematic Reviews 2.We searched on five databases ( i.e., PubMed, Web of Science, Scopus, SPORTDiscus, ProQuest) for systematic reviews with or without meta-analyses that investigated the effects of BCAA supplementation on the post-exercise recovery of muscle damage biomarkers, muscle soreness, and muscle performance. Results: Eleven systematic reviews (seven with meta-analyses) of individual studies were included. Evidence suggests BCAA ingestion attenuates creatine kinase (CK) levels (medium effects) and muscle soreness (small effects) immediately post-exercise and accelerates their recovery process, with trivial-to-large effects for CK levels and small-to-large effects for muscle soreness. BCAA supplementation has no effect on lactate dehydrogenase, myoglobin, and muscle performance recovery. The re-analyses with HKSJ method using the original data reported a slight change in results significance, concluding the same evidence as the original results. The major flaws found in the analyzed reviews were the absence of justification for excluding studies, and the lack of provision of sources of funding for primary studies and sources of conflict of interest and/or funding description. Conclusions: BCAA supplementation is an effective method to reduce post-exercise muscle damage biomarkers, particularly CK levels, and muscle soreness, with no effect on muscle performance. Future systematic reviews with/without meta-analyses, with greater methodological rigor, are needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app