Add like
Add dislike
Add to saved papers

High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives.

Polymers 2023 December 30
A series of di-functional benzoxazine (BZ) monomers was synthesized, specifically the double-decker silsesquioxane (DDSQ) cage structure (DDSQ-BZ). Comparative analyses were conducted between DDSQ-BZ monomers and the most commonly utilized bisphenol A-functionalized bifunctional benzoxazine (BPA-BZ) monomer. DDSQ-BZ compounds possess better thermal properties such as high char yield and high thermal decomposition temperature ( T d10 ) after thermal ring-opening polymerization (ROP) because the inorganic DDSQ cage nanostructure features a nano-reinforcement effect. In addition, blending inorganic DDSQ-BZ compounds with epoxy resin was explored to form organic/inorganic hybrids with enhanced thermal and mechanical properties following thermal ROP. The improvement in mechanical properties is primarily attributed to the network structure formed by the cross-linking between DDSQ-BZ and the epoxy resin during thermal ROP, as well as hydrogen bonding interactions formed between the hydroxyl groups generated during thermal ROP and the Si-O-Si bonds in the DDSQ structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app