Add like
Add dislike
Add to saved papers

Few-shot learning based oral cancer diagnosis using a dual feature extractor prototypical network.

A large global health issue is cancer, wherein early diagnosis and treatment have proven to be life-saving. This holds true for oral cancer, thus emphasizing the significance of timely intervention. Deep learning techniques have gained traction in early cancer detection, exhibiting promising outcomes in accurate diagnosis. However, collecting a substantial amount of training data poses a challenge for deep learning models in cancer diagnosis. To address this limitation, this study proposes an oral cancer diagnosis approach based on a few-shot learning framework that circumvents the need for extensive training data. Specifically, a prototypical network is employed to construct a diagnostic model, wherein two feature extractors are utilized to extract prototypical features and query features respectively, departing from the conventional use of a single feature extraction function in prototypical networks. Moreover, a customized loss function is designed for the proposed method. Rigorous experimentation using a histopathological image dataset demonstrates the superior performance of our proposed approach over comparison methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app