Add like
Add dislike
Add to saved papers

Verifying institutionally developed hybrid 3D-printed coaxial cylindrical phantom for patient-specific quality assurance in stereotactic body radiation therapy of hepatocellular carcinoma.

An accurate and reliable patient-specific quality assurance (PSQA) is crucial to ensure the safety and precision of Stereotactic body radiation therapy (SBRT) in treating Hepatocellular carcinoma (HCC). This study examines the effectiveness of a novel hybrid 3D-printed hybrid coaxial cylindrical phantom for PSQA in the SBRT of HCC. The study compared three different point dose verification techniques for PSQA: a traditional solid water phantom, two dimensional detector array I'MatriXX, and a newly developed hybrid 3D-printed phantom. Thirty SBRT HCC liver cases were examined using these techniques, and point doses were measured and compared to planned doses using the perpendicular composite method with solid water and I'MatriXX phantoms. Unlike the other two methods, the point dose was compared in true composite geometry using the hybrid 3D-printed phantom, which enhanced the accuracy and consistency of PSQA. The study aims to assess the statistical significance and accuracy of the hybrid 3D-printed phantom compared to other methods. The results showed all techniques complied with the institutional threshold criteria of within ± 3% for point-dose measurement discrepancies. The hybrid 3D-printed phantom was found to have better consistency with a lower standard deviation than traditional methods. Statistical analysis using Student's t-test revealed the statistical significance of the hybrid 3D-printed phantom technique in patient-specific point-dose assessments with a p-value < 0.01. The hybrid 3D-printed phantom developed institutionally is cost-effective and easy to handle. It has been proven to be a valuable tool for PSQA in SBRT for the treatment of HCC and has demonstrated its practicality and reliability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app