Add like
Add dislike
Add to saved papers

Cost-Effective Ultrabright Silicon Quantum Dots and Highly Efficient LEDs from Low-Carbon Hydrogen Silsesquioxane Polymers.

Cost-effective methods of synthesizing bright colloidal silicon quantum dots (SiQDs) for use as heavy-metal-free QDs, which have applications as light sources in biomedicine and displays, are required. We report simple protocols for synthesizing ultrabright colloidal SiQDs and fabricating SiQD LEDs based on hydrogen silsesquioxane (HSQ) polymer synthesis. Red photoluminescence with a quantum yield (PLQY) of 60-80% and LEDs with an external quantum efficiency (EQE) of >10% were obtained at 1/3600th of the cost of existing methods. This was achieved by using HSiCl3 and a low-polarity solvent to prepare the HSQ polymer and by optimizing the LED hole-injection layer thickness. A stochastic analysis of 31 SiQD syntheses revealed that SiQDs with the highest PLQYs were obtained from a hard, low-carbon HSQ polymer precursor containing many Si-H groups and cage structures. Notably, simple FTIR measurements predicted whether a HSQ polymer would yield high-PLQY SiQDs and high-EQE LEDs. These straightforward, cost-effective protocols should lead to advances in SiQD synthesis and LED fabrication methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app