Add like
Add dislike
Add to saved papers

Improvements in in vitro spermatogenesis: oxygen concentration, antioxidants, tissue-form design, and space control.

Incorporation of bovine serum-derived albumin formulation (AlbuMAX) into a basic culture medium, MEMα, enables the completion of in vitro spermatogenesis through testicular tissue culture in mice. However, this medium was not effective in other animals. Therefore, we sought an alternative approach for in vitro spermatogenesis using a synthetic medium without AlbuMAX and aimed to identify its essential components. In addition to factors known to be important for spermatogenesis, such as retinoic acid and reproductive hormones, we found that antioxidants (vitamin E, vitamin C, and glutathione) and lysophospholipids are vital for in vitro spermatogenesis. Moreover, based on our experience with microfluidic devices (MFD), we developed an alternative approach, the PDMS-ceiling method (PC method), which involves simply covering the tissue with a flat chip made of PDMS, a silicone resin material used in MFD. The PC method, while straightforward, integrates the advantages of MFD, enabling improved and uniform oxygen and nutrient supply via tissue flattening. Furthermore, our studies underscored the significance of lowering the oxygen concentration to 10-15%. Using an integrated cultivation method based on these findings, we successfully achieved in vitro spermatogenesis in rats, which has been a long-standing challenge. Further improvements in culture conditions would pave the way for spermatogenesis completion in diverse animal species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app