Add like
Add dislike
Add to saved papers

Effect of Amino-Functionalized Polyhedral Oligomeric Silsesquioxanes on Structure-Property Relationships of Thermostable Hybrid Cyanate Ester Resin Based Nanocomposites.

Polymers 2023 December 10
Nanocomposites of cyanate ester resin (CER) filled with three different reactive amino-functionalized polyhedral oligomeric silsesquioxane (POSS) were synthesized and characterized. The addition of a small quantity (0.1 wt.%) of amino-POSS chemically grafted to the CER network led to the increasing thermal stability of the CER matrix by 12-15 °C, depending on the type of amino-POSS. A significant increase of the glass transition temperature, T g (DSC data), and the temperature of α relaxation, T α (DMTA data), by 45-55 °C of the CER matrix with loading of nanofillers was evidenced. CER/POSS films exhibited a higher storage modulus than that of neat CER in the temperature range investigated. It was evidenced that CER/aminopropylisobutyl (APIB)-POSS, CER/ N -phenylaminopropyl ( N PAP)-POSS, and CER/aminoethyl aminopropylisobutyl (AEAPIB)-POSS nanocomposites induced a more homogenous α relaxation phenomenon with higher Tα values and an enhanced nanocomposite elastic behavior. The value of the storage modulus, E ', at 25 °C increased from 2.72 GPa for the pure CER matrix to 2.99-3.24 GPa for the nanocomposites with amino-functionalized POSS nanoparticles. Furthermore, CER/amino-POSS nanocomposites possessed a higher specific surface area, gas permeability (CO2 , He), and diffusion coefficients (CO2 ) values than those for neat CER, due to an increasing free volume of the nanocomposites studied that is very important for their gas transport properties. Permeability grew by about 2 (He) and 3.5-4 times (CO2 ), respectively, and the diffusion coefficient of CO2 increased approximately twice for CER/amino-POSS nanocomposites in comparison with the neat CER network. The efficiency of amino-functionalized POSS in improving the thermal and transport properties of the CER/amino-POSS nanocomposites increased in a raw of reactive POSS containing one primary (APIB-POSS) < eight secondary ( N PAP-POSS) < one secondary and one primary (AEAPIB-POSS) amino groups. APIB-POSS had the least strongly pronounced effect, since it could form covalent bonds with the CER network only by a reaction of one -NH2 group, while AEAPIB-POSS displayed the most highly marked effect, since it could easily be incorporated into the CER network via a reaction of -NH2 and -NH- groups with -O-C≡N groups from CER.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app