Add like
Add dislike
Add to saved papers

Comparison of δ 13 C analyses of individual foraminifer (Orbulina universa) shells by secondary ion mass spectrometry and gas source mass spectrometry.

RATIONALE: The use of secondary ion mass spectrometry (SIMS) to perform micrometer-scale in situ carbon isotope (δ13 C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole-shell δ13 C values measured by gas source mass spectrometry (GSMS).

METHODS: Paired SIMS and GSMS δ13 C values measured from final chamber fragments of the same shell of the planktic foraminifer Orbulina universa are compared. The SIMS-GSMS δ13 C differences (Δ13 CSIMS-GSMS ) were determined via paired analysis of hydrogen peroxide-cleaned fragments of modern cultured specimens and of fossil specimens from deep-sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT-253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

RESULTS: Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS-GSMS δ13 C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13 CSIMS-GSMS values of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS-GSMS δ13 C difference.

CONCLUSIONS: The noted Δ13 CSIMS-GSMS values are most likely due to matrix effects causing sample-standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105 times smaller than that analyzed by GSMS; hence, the extent to which these Δ13 CSIMS-GSMS values represent differences in analyte or instrument factors remains unclear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app