Add like
Add dislike
Add to saved papers

Generation of a Dcx-CreER T2 knock-in mouse for genetic manipulation of newborn neurons.

A wide variety of CreERT2 driver lines are available for genetic manipulation of adult-born neurons in the mouse brain. These tools have been instrumental in studying fate potential, migration, circuit integration, and morphology of the stem cells supporting lifelong neurogenesis. Despite a wealth of tools, genetic manipulation of adult-born neurons for circuit and behavioral studies has been limited by poor specificity of many driver lines targeting early progenitor cells and by the inaccessibility of lines selective for later stages of neuronal maturation. We sought to address these limitations by creating a new CreERT2 driver line targeted to the endogenous mouse doublecortin locus as a marker of fate-specified neuroblasts and immature neurons. Our new model places a T2A-CreERT2 cassette immediately downstream of the Dcx coding sequence on the X chromosome, allowing expression of both Dcx and CreERT2 proteins in the endogenous spatiotemporal pattern for this gene. We demonstrate that the new mouse line drives expression of a Cre-dependent reporter throughout the brain in neonatal mice and in known neurogenic niches of adult animals. The line has been deposited with the Jackson Laboratory and should provide an accessible tool for studies targeting fate-restricted neuronal precursors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app