Add like
Add dislike
Add to saved papers

Electrophysiological mechanisms underlying T wave pseudonormalisation on stress ECGs in hypertrophic cardiomyopathy.

BACKGROUND: Pseudonormal T waves may be detected on stress electrocardiograms (ECGs) in hypertrophic cardiomyopathy (HCM). Either myocardial ischaemia or purely exercise-induced changes have been hypothesised to contribute to this phenomenon, but the precise electrophysiological mechanisms remain unknown.

METHODS: Computational models of human HCM ventricles (n = 20) with apical and asymmetric septal hypertrophy phenotypes with variable severities of repolarisation impairment were used to investigate the effects of acute myocardial ischaemia on ECGs with T wave inversions at baseline. Virtual 12-lead ECGs were derived from a total of 520 biventricular simulations, for cases with regionally ischaemic K+ accumulation in hypertrophied segments, global exercise-induced serum K+ increases, and/or increased pacing frequency, to analyse effects on ECG biomarkers including ST segments, T wave amplitudes, and QT intervals.

RESULTS: Regional ischaemic K+ accumulation had a greater impact on T wave pseudonormalisation than exercise-induced serum K+ increases, due to larger reductions in repolarisation gradients. Increases in serum K+ and pacing rate partially corrected T waves in some anatomical and electrophysiological phenotypes. T wave morphology was more sensitive than ST segment elevation to regional K+ increases, suggesting that T wave pseudonormalisation may sometimes be an early, or the only, ECG feature of myocardial ischaemia in HCM.

CONCLUSIONS: Ischaemia-induced T wave pseudonormalisation can occur on stress ECG testing in HCM before significant ST segment changes. Some anatomical and electrophysiological phenotypes may enable T wave pseudonormalisation due to exercise-induced increased serum K+ and pacing rate. Consideration of dynamic T wave abnormalities could improve the detection of myocardial ischaemia in HCM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app