Add like
Add dislike
Add to saved papers

Changes in bile acid composition are correlated with reduced intestinal cholesterol uptake in intestine-specific WASH-deficient mice.

The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is a pentameric protein complex localized at endosomes, where it facilitates the transport of numerous receptors from endosomes toward the plasma membrane. Recent studies have shown that the WASH complex plays an essential role in cholesterol and glucose homeostasis in humans and mice. To investigate the physiological importance of intestinal WASH, we ablated the WASH component WASHC1 specifically in murine enterocytes. Male and female intestine-specific WASHC1-deficient mice (Washc1IKO ) were challenged with either a standard chow diet or a high-cholesterol (1.25 %) diet (HCD). Washc1IKO mice fed a standard diet did not present any apparent phenotype, but when fed an HCD, their hepatic cholesterol levels were ~ 50 % lower compared to those observed in control mice. The intestinal cholesterol absorption was almost 2-fold decreased in Washc1IKO mice, which translated into increased fecal neutral sterol loss. The intestinal expression of cholesterogenic genes, such as Hmgcs1, Hmgcr, and Ldlr, was significantly higher in Washc1IKO mice than in control mice and correlated with increased whole-body de novo cholesterol synthesis, likely to compensate for impaired intestinal cholesterol absorption. Unexpectedly, the ratio of biliary 12α-/non-12α-hydroxylated bile acids (BAs) was decreased in Washc1IKO mice and reversing this reduced ratio by feeding the mice with the HCD supplemented with 0.5 % (w/w) sodium cholate normalized the improvement of hepatic cholesterol levels in Washc1IKO mice. Our data indicate that the intestinal WASH complex plays an important role in intestinal cholesterol absorption, likely by modulating biliary BA composition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app