Add like
Add dislike
Add to saved papers

Assessment of the Interelectrode Distance Effect over the Omnipole with High Multielectrode Arrays.

The development of high-density multielectrode catheters has significantly advanced cardiac electrophysiology mapping. High-density grid catheters have enabled the creation of a novel technique for reconstructing electrogram (EGM) signals known as "omnipole," which is believed to be more reliable than other methods, especially in terms of orientation independence. This study aims to evaluate how distance affects the omnipolar reconstruction of EGMs by comparing different configurations. Using an animal set up of perfused isolated rabbit hearts, recordings were taken using an ad hoc high-density epicardial multielectrode catheter. Inter-electrode distances ranging from 1 to 4 mm were analysed for their effect on the quality of resulting EGMs. Two biomarkers were computed to evaluate the robustness of the reconstructions: the areas contained within the bipolar loops and the amplitudes of the omnipoles. We hypothesised that both bipolar and omnipolar electrograms would be more robust at shorter inter-electrode distances. The results showed that an increase in distance triggers an increase in loop areas and amplitudes, which supports the hypothesis. This finding provides a more reliable estimate of wavefront propagation for the cross-omnipolar reconstruction method. These results emphasise the importance of distance in cardiac electrophysiology mapping and provide valuable insights into the use of high-density multielectrode catheters for EGM reconstruction.Clinical Relevance- The results of this study have direct clinical relevance in the application of the described techniques to recording systems in the cardiac electrophysiology laboratory, enabling clinicians to obtain more precise characterisation of signals in the myocardium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app